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1. Introduction 

In this paper we study some properties of the normalizer of a subgroup of a Finite 
group, and in particular, obtain some conditions under which the normalizer of a 
nilpotent subgroup contains the subgroup properly. If G is a nilpotent group and 
H is a proper subgroup, then it is an elementary fact that H is properly contained 
in its normalizer in G. We are considering here the dual situation. RecalE that a 
subgroup H of a group G is called a T.I. set (trivial intersection set) if for g E G, 
either Ifg=N, or HgnH=(e). We prove 

Proposition 1. Let 6 be a finite group and H be a proper, nilpotent subgroup of 
G. Assume that H is a T.I. set. Then we have that H<N,(H). 

Proof. Suppose if possible that H= NG(H). Then since H is a T.I. set, it follows 
that G is a Frobenius group with complement H (see for example, [7, Proposition 
8.2, p. 591). Now H is nilpotent and therefore solvable. Using the results of H. 
Zassenhaus on the classification of solvable Frobenius complements (see, fcr 
example, [7, Proposition 18.2, p. 196]), it follows that all the Sylow subgroup?; of 
H are cyclic, and that H has a subgroup K such that H/K is isomorphic to Symt-0. 
Since by hypothesis, H is nilpotent, it follows that H/K is nilpotent. Thus it follows 
that Sym(4) is nilpotent, a contradiction. Hence, we have that H-&(H). 1: 

Example. Let G : = Sym(3) x Z3. Take H to be a Sylow 2-subgroup of G. Then ilir 
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is a T.I. set in G. Further H is contained in a cyclic subgroup of G of order 6. So, 
clearly H< N&f). 

If G is a finite group of composite order, then it is easy to see that there is at least 
one proper subgroup H of G such that N< N,(H). On the other hand, if G is a 
finite, solvable group then it is well known that G has always a nilpotent self- 
normalizing subgroup called a Carter subgroup after R.W. Carter who first ob- 
tained this result [3]; further any two Carter subgroups of a solvable group are 
conjugate to each other. For a non-solvable group, the existence of even at least one 
nilpotent, self-normalizing subgroup cannot be always be guaranteed. For example, 
in the non-solvable group AS every nilpotent subgroup is properly contained in its 
normalizer. However, if we consider a maximal, nilpotent subgroup H of a non- 
solvable group G, then it is easy to show that No(H)=H and further it follows 
readily using a deep result of Thompson [lo], that any two such maximal, nilpotent 
subgroups of G are conjugate. Non-solvable groups with nilpotent, maximal 
subgroups have been classified completely by Bauman [I], and Rose [S]. 

Next, we consider a (nilpotent) group G of order n and embed it in the symmetric 
group Sym(n) by the Cayley mapping (the right regular representation). We prove 
in Section 3 some properties of the normalizer of G (in its embedding) in Sym(n). 
These results which we obtain, are consequences of the following theorem which is 
of independent interest. First, we recall some standard definitions. Let G be a finite 
group and I7 a finite set of primes. A subgroup H of G is called a l7-group if the 
order 1H 1 of H is divisible only the primes in R; H is called a n’-group if 1 H 1 is 
not divisible by any prime in n. A normal 77-complement of a n-subgroup H of 
a finite group G is a I7’-group K such that G = HK, K Q G and HnK = (e). 

Theorem 2. Let G be a II-group of order n where I7 is a finite set of primes. Embed 
G into S,, by the Cay!ey mapping (right regular representation): g-<&J. In this 
embedding, let X be a 

G<XsS, 

subgroup of S,, such that: 

Then G cannot have a normal I7-compIement in X. 

(*) 

We use standard group theoretic terminology and notation as in Huppert [5]. We 
emphasise that failure to keep in mind the following standard notation may lead to 
a confusion: HsG denotes that H is a subgroup of G, and H<G indicates that H 
is a subgroup of G which is not equal to G. All groups considered here are finite. 

2. Proof of Theorem 2 

Suppose if possible that the group G has a normal &complement in X. Then we 
have X= GH where H is a P-group. Now the group X operates on the set G by 



right multiplication and this action is necessarily transitive. Let o be some fixed 

‘point * of the set G. Let X,, be the isotropy group of the point o, that is 

A’,,:= (A-E X: 0.’ = o) where 07” denotes the image of o under the action of the 

element A-. Since the action of X on the set G is transitive, it follows that 

IGI=[X:XJ. So we have, IXJ=iXl/lGl=iHl since H is a normal I&corn- 

plement of G in X. Now we claim: 

n s ‘X,x = (identity). 
\ E .t 

(2.1) 

We prove (2.1) as follows. let II belong to & ‘XI+ where x ranges over the group 

X. Then we have that u =X%Y for all XE X and some u E X0 depending on .Y. Now 
this implies that X’U = DA- and so osl” = o”-~ = 0.’ since ~1 E X0. Since the action of the 

group X on the set G is transitive, it follows that every element of the set G can 

be expressed in the form 0”’ for some XE X (recall that o is some chosen element of 

the set G). Now 0.“” = 0.” implies that CI ‘fixes’ every point of the set G. However, 

the permutation action of X on the set G is a faithful action. Hence it follows that 

u is the identity, proving (2.1). 

Now consider the composite of the following homomorphisms: 

XpX-+X/H=G 

Here, the first homomorphism is a natural embedding of a subgroup into a group 

containing it. Since i X0 j = IH) and H is a I7-complement of G, we have that X,, 

and I G 1 are co-prime. Therefore, X0 must be equal to H. This however, con- 

tradicts (2.1) since for any XE X, we have that A--‘X,x- =_&Iv= N, as kJ is a 

normal subgroup of G. Hence, it follows that G cannot have a normal Z-I-corn- 

plement in X. n 

3. Normalizer of a group in the Cayley embedding 

We now describe some results which are consequences of Theorem 2. The follow- 

ing theorem was proved by Bhattacharya [2]. 

Theorem 3. Let G be an abeiian group of prime power order satisfving fhc fj>*po- 
thesis of Theorem 2. Then we have that G < N,,(G). 

Proof. Clearly, G is a Sylow p-subgroup of X where p is the prime whose power 

is equal to the order of G. If N,(G) = G, then since G is abelian it follows that 

N,(G)=&(G). So, by the Burnside transfer theorem, G has a normal y-conr- 

plement in X, contradicting Theorem 2. Hence we have that GcNY(G). _ I 

xample. Let G := (a>X(b> where a’ = e = b3. Embed G into Sh by the Cayley may- 
ping. Let G be the isomorphic copy of G under this mapping. Then we have that 
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S6= Sym(Q) where Q = (e,a, b, b2,a&&2}. Denote by 1,2, . . . ,6 the elements 
e, a, 6, b2, ab, ab2 respectively. It is easy to check that a corresponds to the permuta- 
tion (12)(35)(46) and that b corresponds to (134)(256). Let c = (56)(34). We check 
that c toes not lie in G but c-l Gc = G. 

Proposition 4. Let G be a group satisfying the hypothesis of Theorem 2. If C is a 
Hall subgroup of X, then G is not contained in the centre of N,(G). In particular, 
if G is a Hall subgroup of X, then G is not abelian. 

Proof. If G is any finite group and H is a Hall subgroup of G such that H is contain- 
ed in the centre of N&H), then it can be shown that H has a normal complement 
in G (see for example, Kurzweil [6, p. 1451). So the proposition now follows using 
Theorem 2. 0 

Using Theorem 2 and [9, Theorem 11, we get the following 

Corollary 5. Let G be a group satisfying the hypothesis of Theorem 2. Assume that 
X is a a solvable group whose system normalizer is self-normalizing and that G is 
a Hall subgroup of X. Then we have that G c No(X). 

Using Theorem 2 and Carter [4], we get the following 

Corollary 6. Let G be a nilpotent group satisfying the hypothesis of Theorem 2. If 
G is self-normalizing and Hall in the group X, then the Sylow subgroups of G are 
not regular in X. 

Finally, we include in the following proposition some properties of a group 
embedded in a symmetric group by the Cayley mapping: 

Proposition 7. Let G be u II-group satisfying the hypothesis of Theorem 2. Then 
we have: 

(i) The group X cannot be a Frobenius group with kernel G. 
(ii) rf G is a nilpotent, Hall, subgroup of X, then there exists at least two 

elements of G which are conjugate in X but not in G. 
(iii) The group G cannot be a hyper-focal, Hall subgroup of X. 

Proof. (i) If X is a Frobenius group with kernel as G, then by a theorem of 
Frobenius (see for example, Huppert [5, Hauptsatz 7.6, p. 495]), G has a normal 
&complement which contradicts Theorem 2. 

(ii) This follows from Theorem 2 using the result that if G is any group with a 
nilpotent, Hall subgroup H such that any two elements of H \+ich are conjugate 
in G, are conjugate in H, then G has a normal n-complement. (see for example, 
Passman [7, Corollary 12.5, p. 1021). 
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(iii) We recall the definition of a hyper-focal subgroup. If G is any finite group 
and Hz&, define Foco(G) to be the subgroup generated by ail the commutators 
[h, g] with h E H, g E G and [h, g] E H. Define recursively Hl : = Foe@_ 1). We say 
that H is hyperfocal in G if for some n,H,, =(e). Now, if G is any group with a 
hyper-focal, Hall subgroup then G has a normal I7-complement (see for example, 
Passman [7, Theorem 12.4, p. loll). Hence in our case, the result follows now using 
Theorem 2. III 
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